
JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

 

65 – v.5(2)-2012 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

WORKING MEMORY AND MATHEMATICAL THINKING: A 

COGNITIVE AND AFFECTIVE NEUROSCIENCE APPROACH 

J. Landeira-Fernandez1 

Pontifícia Universidade Católica do Rio de Janeiro, Universidade Estácio de Sá, 

Instituto Brasileiro de Neuropsicologia e Comportamento, Rio de Janeiro, Brazil 

Rosane Zylberberg-Landeira 

Instituto Brasileiro de Neuropsicologia e Comportamento, Rio de Janeiro, Brazil 

Helenice Charchat-Fichman 

Pontifícia Universidade Católica do Rio de Janeiro, Instituto Brasileiro de 

Neuropsicologia e Comportamento, Rio de Janeiro, Brazil 

Fernando P. Cárdenas 

Instituto Brasileiro de Neuropsicologia e Comportamento, Rio de Janeiro, Brazil, 

Universidad de los Andes, Bogotá, Colombia 

 

ABSTRACT 

Good performance on mathematical tasks requires the development of highly 

complex skills. The working memory model provides a useful framework for 

understanding the role of the different cognitive mechanisms involved in these 

mathematical skills. The present paper reviews several neuropsychological and 

neuroimaging studies, suggesting that mathematical performance depends on 

working memory resources. The paper begins with a description of the different 

working memory components. We then present evidences that suggest that each 

working memory component plays a crucial role in mathematical problem solving. We 

also review numerous studies that show that working memory and mathematical 

thinking share a considerable number of neural circuitries within the posterior parietal 

cortex and prefrontal regions. Finally, we discuss how anxiety might jeopardize 

working memory capacity and thus reduce performance in solving mathematical 

problems. Measures that increase working memory capacity might improve 

mathematical problem-solving achievement. Interventions based on controlling the 
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negative feelings that precede mathematical performance might also be helpful for 

people who suffer from mathematical anxiety. 

Keywords: number sense, number magnitude, neural circuitry, anxiety, working 

memory training.  
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INTRODUCTION 

 

How much is 37 times 7? Before you continue reading, try to solve this 

mathematical problem. Did you reach a result? If your answer was 259, then 

congratulations! You are right. Now try to describe the mental operations that led you 

to the correct answer. Most likely, you first multiplied 7 by 7, which equals 49. Then 

you probably kept the 9 as part of the final answer and added 4 to the result of 

multiplying 7 by 3, which equals 25. You then came to the result of 259. This simple 

mathematical problem required the performance of several mental functions that 

might be associated with working memory. The purpose of the present paper is to 

provide a brief literature overview on the relationship between working memory and 

mathematical ability, such as number sense, number magnitude, and basic arithmetic 

algebraic operations. We begin this review by pointing out some of the historical 

aspects of the concept of short-term memory that resulted in the development of the 

working memory model proposed by Baddeley and Hitch (1974) and updated by 

Baddeley (2000). 

 

WORKING MEMORY MODEL 

 

The idea that human mental faculties have a temporary memory system was 

already present in the thinking of the ancient Greek philosophers Plato and Aristotle. 

Experimental studies within this area began with the pioneering work of Ebbinghaus 

(1885). He employed nonsense syllables to study different forms of memory. Among 

his several discoveries was the fact that he could correctly recall seven syllables 

immediately after a single reading. At around the same time, James (1890) coined 

the term “primary memory” to designate this ability to maintain a small amount of 

information in consciousness for a brief period of time. In the middle of the 20th 

century, Miller (1956) also employed the expression “immediate memory” to refer to 

this same temporary memory system and confirmed that its temporary capacity 

consisted of seven plus or minus two units, whether the units are numbers, letters, 

words, or any other chunks of information. 
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A landmark in the study of memory was the Atkinson and Shriffrin (1968) 

model, one that included sensory memory, short-term memory (STM), and long-term 

memory (LTM). According to this model, information from the external word is first 

registered as sensory memory for a very brief period of time (200-500 ms) after the 

original stimulus ceases. Sensory memory of visual, auditory, and touch stimuli has 

also been termed iconic, echoic, and haptic memory, respectively. Because sensory 

memory is a short-lived phenomenon, this type of memory is not under cognitive 

control. 

From sensory memory, a limited amount of the incoming information that was 

attended passes to STM, a capacity-limited, unitary memory store which temporarily 

keeps information for further processing. This STM corresponds to the “primary 

memory” or “immediate memory” defined by Ebbinghaus (1885) and James (1890), 

respectively. Information in STM decays after a few seconds if not rehearsed. 

However, if rehearsal occurs, then the information is consolidated into LTM, having 

an unlimited capacity to retain information for a long period of time. 

The relationship between STM and LTM is mediated by two different 

mechanisms: consolidation and retrieval. Consolidation comprises the processes of 

transferring the information from a transitory STM system to a more permanent LTM 

system. It begins at the time of the learning experience and leads to a certain 

stabilization of the information. When consolidation occurs and the information has 

entered LTM, it fades from awareness. However, we know that the information has 

been successfully stored in LTM because we can bring it back to our consciousness 

through a retrieval mechanism. Therefore, retrieval comprises the search for specific 

information stored in LTM and the act of bringing it back to STM. Atkinson and 

Shiffrin (1971) equated STM to the content of consciousness: “In our thinking we 

tend to equate the short-term store with ‘consciousness,’ that is, the thoughts and 

information of which we are currently aware can be considered part of the contents of 

the short-term store” (p. 83). 

However, results from studies of healthy subjects and neuropsychological 

studies of brain-damaged patients began to pose serious challenges to the serial 

model of memory proposed by Atkinson and Shriffrin (1968). These results 

challenged the idea that STM is a single storage system that needs to be activated 
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as a whole to consolidate new information into LTM. To deal with these problems, 

different concepts of the STM model, envisioning different storage mechanisms 

within this system, began to emerge under the designation of working memory. 

The term “working memory” was coined by Miller, Galanter & Pribram (1960) 

and used by Atkinson and Shriffrin (1968) as synonymous with STM. However, more 

recent literature has made a clear distinction between STM and working memory. 

Today, we define working memory as the ability to simultaneously process and keep 

information at a conscious level over a relatively short period of time to perform a 

cognitive task. The model was initially proposed by Baddeley and Hitch (1974) and 

remains the most influential framework within this area, despite the fact that several 

other working memory models have been proposed (e.g., Cowan, 2005; Engle, Kane 

& Tuholski, 1999; Ericsson & Kintsch, 1995). Although STM and working memory 

share a close relationship, both referring to transient memory, the concept of working 

memory replaced the concept of a unitary short-term storage system proposed by 

Atkinson and Shiffrin (1968) with the notion of a multiple-component structure. 

Moreover, the working memory model represents an interface between processing, 

storing, and manipulating information, as opposed to STM, which only has storage 

capacity. 

The traditional working memory model postulates the existence of interacting 

components responsible for holding and manipulating verbal and visual-spatial 

information for a brief period of time. The phonological loop is responsible for the 

temporary retention of verbal material. Information is maintained in the phonological 

loop through a subvocal rehearsal process. Verbal information that is temporally 

stored in the phonological loop can be presented auditorially or visually, as long as 

the visual stimuli is nameable, such as letters, words, or numbers. An example of 

phonological loop function is the problem that we usually face when we have to 

memorize a phone number before we make a phone call. A few minutes after doing 

that, we can no longer remember the numbers. Because most of the first studies that 

were conducted with this temporary storage system employed verbal information, 

equating the phonological loop with STM and consequently the historical concepts of 

“primary memory” or “immediate memory,” in which a limited amount of verbal 

information is held temporarily in consciousness, is possible. 

http://en.wikipedia.org/wiki/George_Armitage_Miller
http://en.wikipedia.org/wiki/Eugene_Galanter
http://en.wikipedia.org/wiki/Karl_H._Pribram
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The visual-spatial sketchpad represents another component of working 

memory and is responsible for the temporary retention of visual-spatial information. A 

good example of this working memory component is what happens when driving on a 

foggy road. We are constantly aware of the location of the cars, but as we continue to 

drive, we are unable to recall where each car was on the road. Another example of 

how the visual-spatial information employed by working memory is handled by the 

visual-spatial sketchpad is a popular concentration or memory game. The purpose of 

this game is to find the location of pairs of pictures that are face down after they had 

been reversed, memorized, and put back, facing down again. When a pair of figures 

is matched, remembering where these figures were located becomes difficult. 

More recently, Baddeley (2000) proposed a new working memory component, 

termed the episodic buffer. This component is responsible for combining 

phonological, visual, and spatial information and integrating them with previously 

consolidated information in LTM into a unitary episodic representation. The episodic 

buffer corresponds to some sort of temporary episodic memory that can chunk 

information together according to our prior knowledge and thus enhance the capacity 

of STM, chunking information in units that make sense to the subject (Miller, 1956). 

The phonological loop, visual-spatial sketchpad, and episodic buffer are 

connected to the central executive component of working memory. This fourth 

component acts as an attentional controller, coordinating the work of these three 

components that are considered slave systems to indicate the fact that their storage 

activity is directed by the central executive (Baddeley, 1996). This processing 

function includes directing attention, maintaining task goals, making decisions, and 

retrieving memories from LTM. Baddeley (1986, 1990) equated the central executive 

to the supervisory attentional system described by Norman and Shallice (1986). This 

system is responsible for allocating attention to task- or goal-relevant information 

while inhibiting task-irrelevant information. 

Therefore, Baddeley’s working memory model has three STM components—

two of them are related to modality-specific information (i.e., verbal or visual-spatial) 

and the third is associated with multimodal information (i.e., the episodic buffer)—and 

a single processing component related to attention and executive function. The 

interaction between these four working memory components is necessary to perform 
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higher-level cognitive activities, such as mathematical thinking. Since Hitch’s (1978) 

early article on multistep arithmetic problem solving, several reports on the critical 

role of working memory in mathematical problem solving have been published. Some 

of these evidences are discussed next. 

 

WORKING MEMORY COMPONENTS THAT UNDERLIE MATHEMATICAL 

THINKING 

 

Mathematical problem solving is a multidimentional task that most likely 

requires the activation of different working memory components. An initial inquiry in 

the study of the relationship between each working memory component and 

mathematical thinking was whether verbal or visual-spatial activation is necessary 

during mathematical thinking. The answer to this question appears to be complex. 

Although it is impossible to addresses this issue in the present work, we can illustrate 

the convolution of this topic with the report of well-know mathematician. Henri 

Poincaré (1948), for example, acknowledged the importance of language in his 

mathematical thinking, enforcing the idea that mathematical representation is a 

consequence of human linguistic competence. However, other distinguished 

mathematicians, such as Albert Einstein, emphasized non-verbal, language-

independent processes related to analogical mental transformations and visual-

spatial processing in his mathematical thinking. He stated that “words and language, 

whether written or spoken, do not seem to play any part in my thought processes. 

The psychological entities that serve as building blocks for my thought are certain 

signs or images, more or less clear, that I can reproduce and recombine at will” 

(Dehaene, Spelke, Pinel, Stanescu & Tsivkin, 1999). 

Current empirical research that investigates the participation of each working 

memory component in mathematical thinking employs different methodologies. One 

strategy is to examine the correlations among several measurements of working 

memory and mathematical tasks. Based on individual differences across these 

variables, determining the extent to which each working memory component can 

predict different types of mathematical performance is possible. Another 

methodological design that can be employed to experimentally investigate this 



 Working memory and mathematical thinking: a cognitive and affective neuroscience approach 

 

72 – v.5(2)-2012 

JIEEM – Jornal Internacional de Estudos em Educação Matemática 
IJSME – International Journal for Studies in Mathematics Education 

problem is the dual-task paradigm. According to this procedure, a subject is required 

to perform two tasks simultaneously, called a primary or criterion task (e.g., solving 

simple mathematical problems) and a secondary task (e.g., any task that activates a 

component of the working memory system). The subject is also required to perform 

the primary or criterion task alone (single-task condition). A comparison of the dual-

task condition with the single-task condition allows an evaluation of whether the 

same cognitive resources are shared between the primary (i.e., criterion) and 

secondary tasks. In other words, if the working memory component is required to 

solve a mathematical problem, then the secondary task should interfere with the 

primary mathematical task and thus reduce performance in the dual-task condition 

compared with the single-task condition. However, if the working memory component 

is not required to solve the mathematical problem, then no interference between the 

secondary and primary tasks should occur, and no difference between the dual- and 

single-task conditions should be observed. 

An important issue in the study of mathematical thinking is that these skills 

depend on formal instruction, usually beginning at school entry. Therefore, most 

studies that investigate the relationship between working memory and mathematical 

ability focus on children of preschool or school age. These studies can employ 

children with normal learning development, mathematically precocious children, or 

even children who suffer from mathematical learning disabilities, a condition known 

as dyscalculia. Finally, developmental studies generally employ a cross-sectional 

design, in which different children of different ages are assessed at the same time. 

Longitudinal designs can also be employed and consist of studying the same group 

of children over a particular period of time. 

What these studies clearly indicate is that working memory is strongly 

implicated in mathematical ability. This relationship depends on several variables, 

such as age, the difficulty of the mathematical problems, the type of instruction, and 

the way in which the problem is presented (Raghubar, Barnes & Hecht, 2010). 

Unfortunately, not completely clear is how different mathematical skills are handled 

by the four working memory components. Curiously, the contribution of the episodic 

buffer to mathematical achievement has not been investigated. The lack of studies 

devoted to the investigation of this particular relationship might be attributable to the 
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fact that the concept of the episodic buffer is relatively new, and only a few 

measurements have been developed to evaluate the role of this working memory 

component in mathematical performance (Henry, 2010). 

Numerous studies have investigated the participation of the phonological loop 

and visual-spatial scratchpad in mathematical performance among children with 

mathematical learning problems. The results indicate that both working memory and 

slave working memory components are involved in this developmental disorder. For 

example, Swanson & Jerman (2006) reported a meta-analysis of 28 studies that 

compared several cognitive features of children with and without mathematical 

disabilities. They found that differences between these two groups were related to 

verbal working memory after controlling for other variables, such as age and 

intelligence. These results might indicate that poor performance among children with 

mathematical learning problems is attributable to difficulties decomposing and 

understanding the mathematical problem (Henry & Maclean, 2003). 

The visual and spatial representation of numerical information in working 

memory is also an important factor associated with mathematical learning disability. 

A few studies indicated that problems in spatial but not visual tasks might be 

associated with mathematical learning difficulties (Cornoldi, Venneri, Marconato, 

Molin & Montinari, 2003). Mammarella, Lucangeli & Cornoldi (2010) found that 

children with mathematical difficulties had lower scores on spatial tasks but not visual 

working memory tasks compared with a control group matched for verbal ability, age, 

gender, and sociocultural level. The same pattern of results was also reported 

recently by Passolunghi & Mammarella (2011) when children with mathematical 

learning disabilities were compared with another group of children with poor problem-

solving skills. 

As expected, deficits in the central executive component of working memory 

also appears to be an important factor responsible for mathematical problems 

because mathematical tasks place a heavy demand on this executive system. A lack 

of coordination of the many processes involved in counting or solving arithmetic 

problems might be attributable to a poor central executive component of working 

memory (Swanson & Olga, 2006). This appears to be consistent among children with 

mathematical learning deficiencies and children with persistently low achievement in 
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mathematics. They appear to present problems understanding and representing 

numerical magnitude and difficulties retrieving basic arithmetic facts from LTM. 

These difficulties, in turn, cause a delay in learning mathematical procedures (Geary, 

2011a). 

Studies of healthy subjects also indicated the importance of all three of these 

working memory components in mathematical skills. The roles of the phonological 

loop and visual-spatial sketchpad appear to vary according to the complexity and 

content of the mathematical task. Accordingly, the phonological loop appears to be 

important for processes that involve the articulation of numbers, such as counting 

(Krajewski & Schneider, 2009) and verbal coding strategies during written arithmetic 

problem solving (Andersson, 2008). The visual-spatial sketchpad, in turn, appears to 

be associated with intuitive aspects of number processing and calculation (de Hevia, 

Vallar & Girelli, 2008) and a broader number of mathematical domains (De Smedt, 

Janssen, Bouwens, Verschaffell, Boets & Ghesquière, 2009). 

The role of the phonological loop and visual-spatial sketchpad in healthy 

children with no mathematical problem-solving difficulties might change with age and 

mathematical problem experience (Meyer, Salimpoor, Wu, Geary & Menon, 2010). 

For example, McKenzie, Bull & Gray (2003) used the dual-task procedure to 

investigate phonological and visual-spatial working memory components in a simple 

arithmetic task in younger (6-7 years old) and older (8-9 years old) children. They 

found that younger children were not affected by phonological interference, whereas 

visual-spatial interference had a significant effect on mathematical performance. The 

results indicated that the older children were affected by both phonological and 

visual-spatial interference. Therefore, younger children appeared to employ only the 

visual-spatial sketchpad, whereas older children relied on both the visual-spatial 

sketchpad and phonological loop components of working memory. 

The role of the visual-spatial sketchpad in mathematical thinking appears to 

play an increasingly important role in mathematical ability during later stages of 

development, such as at 9 to 10 years of age (Holmes, Adams, & Hamilton, 2007), 

11 and 12 years of age (Henry & Maclean, 2003), 12 to 13 years of age (Dark & 

Benbow, 1990), and 15 to 16 years of age (Reuhkala, 2001). The phonological loop, 
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in turn, appears to be an important element in mathematical performance when the 

task has been well-learned (Raghubar et al., 2010). 

The central executive also plays a pivotal role in mathematical thinking in 

healthy children. In a five-year longitudinal study, Geary (2011b) reported that the 

central executive component of working memory predicted mathematical 

performance. A longitudinal study of children in the first and second grade also found 

that the central executive was the unique predictor of mathematics problem-solving 

achievement (De Smedt et al., 2009). 

Finally, a study of subjects who excelled in mathematics performance 

supported the primary conclusion that successful mathematical problem solving 

requires the activation and optimal use of working memory resources. Precocious 

first-grade children with extremely good performance on mathematical problems had 

higher working memory ability in all three components (Hoard, Geary, Byrd-Craven, 

& Nugent, 2008) or at least in the central executive system (Swanson, 2006) 

compared with typical children of the same age. Evidence has also shown that 

adolescents with exceptional mathematical abilities had greater activity in the visual-

spatial and central executive components of working memory (Desco et al., 2011). 

The interplay between these different working memory components during 

number processing has been proposed by the triple-code theory posited by Dehaene 

and colleagues (Dehaene, 1992; Dehaene, Bossini, & Giraux, 1993; Dehaene & 

Cohen, 1995). According to this model, numerical information can be mentally 

represented and manipulated in three different forms. First, the verbal representation 

of numbers appears as strings of words (e.g., thirty-seven) in the phonological loop. 

Second, a visual Arabic representation of the number occurs as a string of numerals 

(e.g., 37) in the visual-spatial scratchpad. Finally, an analogical spatial representation 

of the number expresses the number’s magnitude in a mental number line so that its 

magnitude can be compared with other numbers (e.g., knowledge that 37 is bigger 

than 7 and smaller than 50 and is approximately one-third of the way between 0 and 

100). The hypothesis that working memory capacity is directly associated with 

mathematical performance suggests an overlap between the neural circuitries 

involved in working memory and mathematical thinking. Below we present evidences 

that support this possibility. 
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NEURAL CIRCUITRIES INVOLVED IN WORKING MEMORY AND 

MATHEMATICAL THINKING 

 

Several clinical and neuroimaging studies that have used brain-damaged 

patients and healthy subjects have successfully investigated the neural circuitry that 

underlies working memory and mathematical thinking. Working memory is a more 

general system, the functioning of which involves a sensory-perceptual mechanism 

that is necessary to process different stimulus modalities that come from the external 

world. Auditory and visual stimuli are the two sensory components of working 

memory. Auditory stimuli related to verbal information are processed by the primary 

auditory cortex in the temporal lobe, whereas visual-spatial information is processed 

by the primary visual cortex located in the occipital lobe. Visual and auditory 

information are integrated at higher level through efferent projections from these 

primary sensorial areas to the posterior parietal cortex. Hemispheric specialization 

exists, according to the modality dimension of the information processed by the 

working memory system. The left parietal cortex is more active during verbal tasks, 

whereas the right parietal cortex is preferentially activated during nonverbal spatial 

tasks (Wager & Smith, 2003). 

The posterior parietal cortex can be divided into the superior parietal lobule 

and inferior parietal lobule, including the angular and supramarginal gyri, separated 

by the horizontal intraparietal sulcus. The inferior parietal lobule appears to be 

associated with auditory encoding, especially speech processing, such as in 

phonological discrimination and in identification task. The superior parietal lobule, in 

turn, appears to be related to the processing of visual-spatial information. For 

example, lesions within this area might lead to visuospatial hemineglect (Driver & 

Mattingley, 1998). Reciprocal projections between the superior and inferior parietal 

lobules are important for multisensory integration within the parietal lobe that might 

translate visually processed information into verbal or phonological code, such as in 

reading tasks.  

These neural networks within the posterior parietal cortex might be also 

related to the episodic buffer, responsible for binding unimodal information into single 

multimodal units. The episodic buffer is also responsible for the retrieval of 
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information from LTM according to its multidimensional representation. Consistent 

with this function, the hippocampus (Berlingeri et al., 2008; Rudner, Fransson, 

Ingvar, Nyberg & Rönnberg, 2007) in conjunction with the prefrontal cortex might also 

underlie the neural circuitry of the episodic buffer.   

The prefrontal cortex is probably the most important neural substrate within 

this circuitry responsible for the central executive component of working memory 

(D’Esposito, Detre, Alsop, Shin, Atlas, & Grossman, 1995). The prefrontal cortex is 

divided into medial and lateral surfaces, the latter consisting of ventrolateral, 

dorsolateral, and anterior prefrontal regions. The dorsolateral and ventrolateral 

prefrontal regions have distinct neuronal specializations and are associated with 

different domains of working memory. The dorsolateral prefrontal cortex appears to 

be responsible for holding information in consciousness when it is no longer available 

in the environment but still necessary to perform a certain cognitive task, such as 

directing and changing attention to the internal representation of sensory stimuli. This 

ability of working memory to manipulate information is likely accomplished by 

bidirectional projections that the dorsolateral prefrontal cortex maintains with the 

posterior parietal cortex (Crone, Wendelken, Donohue, van Leijenhorst, & Bunge, 

2006).  

The dorsolateral prefrontal cortex also plays a role in rehearsal mechanisms 

through projections that it maintains with the ventrolateral prefrontal cortex. This area 

lies within the left hemisphere and corresponds to Broca’s area. It is highly activated 

in working memory tasks that require subvocal rehearsal and other verbal tasks. The 

ventrolateral prefrontal cortex within the right hemisphere, in contrast, is more active 

during visual-spatial tasks (D’Esposito et al., 1995). Therefore, the ventrolateral 

prefrontal cortex might have lateralized specialized functions that might be 

responsible for different working memory components. The phonological loop 

appears to be associated with the functioning of the left hemisphere, whereas the 

visual-spatial sketchpad is associated with the functioning of the right hemisphere 

(Smith & Jonides, 1999). 

Brain lesion and neuroimaging data suggest considerable overlap between the 

neural circuitry involved in working memory and mathematical skills. The ability to 

solve mathematical problems has typically been associated with cortical areas within 
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the left hemisphere associated with linguistic ability. That is the case with Broca’s 

area (i.e., ventrolateral prefrontal area of the left hemisphere) and its involvement in 

both linguistic and arithmetic function (Delazer et al., 2005). Accordingly, patients 

with motor aphasia might also present calculation deficits (Dehaene & Cohen, 1997). 

However, other nonverbal brain structures within the left and right 

hemispheres have also been associated with mathematical thinking. The role of the 

posterior parietal cortex in mathematical ability has been inferred from studies of 

patients with brain lesions. For example, Gerstmann’s Syndrome (Gerstmann, 1940) 

involves damage to the left inferior parietal lobule and is associated with symptoms 

related to dyscalculia and finger agnosia (i.e., a disability in the mental representation 

of fingers), thus imposing difficulty using the fingers to count. Patients with lesions of 

the left or right posterior parietal cortex also presented different forms of dyscalculia 

(Cipolotti, Butterworth, & Denes, 1991; Molko et al., 2003). Furthermore, the 

temporary disruption of neural activity following transcranial magnetic stimulation 

either in the left or right parietal cortex disrupted performance in several 

mathematical problems (Cappelletti, Barth, Fregni, Spelke & Pascual-Leone, 2007). 

Finally, several neuroimaging studies have shown that the posterior parietal cortex, 

including both the superior and inferior parietal lobules, is implicated in mental 

calculation (Dehaene et al., 1999). 

Because the posterior parietal cortex is also involved in working memory, 

these findings suggest neural overlap between working memory and mathematical 

ability. Consistent evidence also suggests the existence of a brain region exclusively 

specialized for number processing. Two meta-analyses (Dehaene, Piazza, Pinel, & 

Cohen, 2003; Cohen-Kadosh, Lammertyn & Izard, 2008) found that the horizontal 

intraparietal sulcus in both hemispheres represents a specialized brain area for 

number processing. This region is systematically activated in all number tasks, 

independent of the modality of the information, regardless of whether the numerals 

were written (visual), spoken (auditory), or even spelled out. The involvement of the 

horizontal intraparietal sulcus in the processing of numerical information is so striking 

that abnormalities in this region might represent a biological marker of developmental 

dyscalculia (Rubinsten & Henik 2009; Butterworth, 2010). 
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Interestingly, activity in the horizontal intraparietal sulcus is also associated 

with the working memory system. For example, individual differences in horizontal 

intraparietal sulcus activity is associated with working memory capacity in adults 

(Todd & Marois 2005) and comparisons between children and adults (Klingberg, 

Forssberg, & Westerberg, 2002). Recently, Dumontheil and Klingberg (2011) found 

that greater activation in the left but not right horizontal intraparietal sulcus during a 

visual-spatial working memory task was associated with poorer arithmetical 

performance 2 years later. Therefore, working memory and mathematical ability 

might share important neural circuitries within the posterior parietal cortex. 

Consistent with this possibility, distinct neural circuitries within the posterior 

parietal cortex might be associated with different working memory components 

involved in mathematical performance (Dehaene et al., 2003). Projections from the 

neural regions within the horizontal intraparietal sulcus to the inferior parietal lobule 

of the left hemisphere form a network with Broca’s area in the prefrontal cortex and 

might be related to number manipulation in verbal form, thus representing a possible 

interaction between the phonological loop and central executive of working memory. 

Bilateral projections from the area within the horizontal intraparietal sulcus to the 

superior parietal lobule that in turn sends connections to the occipital cortex might be 

involved in the visual-spatial and attentional aspects of mental calculation. Activity 

within the primary and secondary visual occipital cortices suggests the importance of 

visual representational mechanisms in mathematical thinking. 

Dehaene et al. (1999) also found that the left and right posterior parietal cortex 

might play differential roles in mathematical ability. The left inferior parietal lobule is 

involved in exact arithmetic calculation and is language-dependent. Approximate 

arithmetic, in contrast, is not language-dependent and relies primarily on a quantity 

representation implemented in the visual-spatial networks of the left and right parietal 

cortex. Differences in mathematical reasoning between the left and right posterior 

parietal lobe have also been reported by Cappelletti, Lee, Freeman, & Price (2010). 

They found that the right posterior parietal cortex was involved in conceptual 

decisions in selective tasks that involve numbers, whereas left posterior parietal 

activation did not depend on whether the information was extracted and compared 

with numbers or object names. 
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The role of the right hemisphere in mathematical skills has also been observed 

in mathematically gifted students. Subjects with a high level performance in 

mathematical problem solving presented higher activation of the right prefrontal and 

medial temporal areas compared with a group of non-mathematically gifted subjects 

(Pesenti et al., 2001). However, the main finding from this study was the bilateral 

neural activity that mathematically gifted subjects exhibited during mathematical 

thinking. Higher connectivity between the left and right hemispheres in fronto-parietal 

regions appears to be the main characteristic of subjects with high mathematical 

abilities (Alexander et al., 1996; Singh & O’Boyle, 2004; O’Boyle et al., 2005). 

Notably, fronto-parietal networks related to working memory and mathematical 

thinking can interact with other brain circuitries involved in different emotional and 

motivational systems. This interaction can enhance or reduce working memory 

capacity and thus mathematical problem-solving performance. For example, 

mathematically gifted subjects presented high levels of motivation and consequently 

a high amount of training in mathematical problems that in turn might enhance 

working memory resources (Dehaene, 2001). Interactions with other neural circuitries 

involved in anxiety, in contrast, might negatively impact these fronto-parietal 

networks and thus reduce working memory resources and mathematical 

performance. The negative impact of anxiety on cognitive tasks related to 

mathematical problem solving is discussed next. 

 

ANXIETY, WORKING MEMORY, AND MATHEMATICAL THINKING 

 

Imagine that you have to solve the multiplication problem presented at the 

beginning of this paper under an extremely dangerous condition, such as during a 

car accident in which you are involved. Your performance would certainly be well 

below your mathematical ability because of the high anxiety triggered by this 

dangerous situation. This example illustrates how high levels of anxiety can interfere 

with our working memory capacity and thus lower our performance on mathematical 

tasks. 
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Anxiety can be defined as an emotional or motivational state that can be 

unpleasant or aversive and is triggered by a real or potentially threatening 

environmental situation. Anxiety produces a series of physiological and behavioral 

responses that might help deal with the threatening situation. The relationship 

between anxiety and task performance has been suggested to follow an inverted U-

shaped curve (Yerkes & Dodson, 1908). This relationship, known as Yerkes-Dodson 

Law, holds that every task has an optimal point of anxiety for its best performance. 

Levels below or above this point tend to impair performance on the task. The Yerkes-

Dodson Law also suggests that the optimal anxiety level for the best task 

performance depends on the degree of task difficulty. Thus, a harder task is 

associated with a lower optimal level of anxiety. Conversely, an easier task is 

associated with a higher optimal level of anxiety. However, excessively high levels of 

anxiety always impair task performance, independent of how easy the task is. 

Cognitive tasks have a certain degree of difficulty so that small levels of 

anxiety can disrupt cognitive task performance. Indeed, a negative relationship 

appears to exist between anxiety and mathematical performance (Eysenck, 

Derakshan, Santos & Calvo, 2007). Interference with working memory function 

seems to be the main reason for the adverse effects of anxiety on mathematical 

problem solving (Ashcraft & Knause, 2007). Individuals with elevated trait anxiety 

experience deficits in attention shifting and the inhibition of irrelevant information, 

leading to poor performance on mathematical problems (Eysenck et al., 2007). 

According to this view, anxiety consumes a portion of the limited resources of 

working memory necessary to solve mathematical problems. This situation 

resembles a dual-task paradigm, in which anxiety functions as a resource-demanding 

secondary task that negatively impacts the primary or criterion mathematical task 

(Ashcraft & Krause, 2007). 

The desire to perform as well as possible under stressful or high-pressure 

circumstances also reduces mathematical performance because of working memory 

impairment. Interestingly, subjects with higher working memory capacity under 

normal conditions performed worse than subjects with lower working memory 

capacity under a high-pressure test situation (Beilock, 2008). These results suggest 

that individuals with high and low working memory capacities employ different 
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strategies to solve complex mathematical problems. Individuals with high working 

memory capacity rely on more demanding procedures to solve mathematical 

problems. High-pressure situations impact working memory resources, making them 

susceptible to failure. In contrast, individuals with low working memory capacity rely 

on shortcuts to solve these same mathematical problems because of their working 

memory limitations. Therefore, pressure-induced working memory resource 

consumption does not disrupt their mathematical performance (Beilock, 2008). 

Although there are still several debates, it has been suggested that 

mathematical activities per se are well known to cause anxiety (Ashcraft, 1995; 

Hembree, 1990; Richardson & Suinn, 1972). This effect seems to be specific to 

mathematical tasks and occurs independently of any high-pressure circumstance or 

task difficulty. Mathematics anxiety is characterized by feelings of apprehension and 

tension concerning the manipulation of numbers and completion of mathematical 

problems in various contexts (Richardson & Suinn, 1972). People who suffer from 

mathematical anxiety have problems counting and interpreting mathematical 

problems but exhibit no deficits in other difficulty-matched non-mathematical tasks 

(Faust et al., 1996). Poor mathematical performance in subjects who suffer from 

mathematical anxiety is associated with limitations in the central executive 

component of working memory (Andersson, 2008). 

Subjects with mathematical anxiety typically present anxiety reactions before 

performing the task. In a recent neuroimaging study, Lyons and Beilock (2011) found 

that not all mathematical anxiety subjects performed equally poorly on a 

mathematical task. Moreover, mathematical deficits in subjects who suffer from 

mathematical anxiety could be predicted by bilateral activation of fronto-parietal 

circuitries that involve the dorsolateral prefrontal cortex before the beginning of the 

mathematical task. The dorsolateral prefrontal cortex is also associated with the 

interpretation of potentially threatening situations (Bishop, 2007). Therefore, greater 

activation of the neural circuitries involved in working memory and mathematical 

thinking in the dorsolateral prefrontal cortex before beginning a mathematical task 

may be associated with a better ability of mathematical anxiety subjects to inhibit 

their negative reactions to the upcoming mathematical task and thus overcome this 

mathematics-specific deficit. 
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CONCLUSIONS 

 

Mathematical thinking is an important mental function for everyday life. It 

requires highly diverse cognitive abilities, ranging from decomposing and 

understanding the mathematical problem verbally to abstract symbol manipulation in 

a visual-spatial representation. For example, learning to read can occur 

independently of any mathematical knowledge. Nonetheless, reading is a necessary 

condition to solve mathematical problems. Therefore, different cognitive domains that 

store and manipulate verbal and visual-spatial information while solving a 

mathematical problem represent crucial factors for successful performance on these 

tasks. 

A considerable amount of empirical evidence from the past 30 years clearly 

indicates that different working memory components are critically involved in the 

solution of mathematical problems that require more than just memory retrieval. 

Indeed, working memory is increasingly more involved in mathematical reasoning as 

more intermediate steps are required to solve a mathematical problem (Beilock, 

2008). Neuroimaging studies corroborate this premise. Although the precise neural 

circuitry that underlies mathematical thinking is not completely clear, several studies 

have reported that working memory and mathematical tasks likely recruit the same 

brain structures within the posterior parietal and prefrontal cortices. 

Understanding the neuropsychological mechanism and neural circuitries of 

mathematical thinking might help develop measures that can improve mathematical 

problem-solving achievement. The fact that adequate mathematical performance 

requires an optimal working memory capacity suggests that improving working 

memory resources might enhance mathematical performance. For example, Witt 

(2011) recently reported that children who received working memory training 

exhibited a significant improvement in mathematical problem solving compared with 

matched subjected who did not receive working memory training. 

Emotional and motivational aspects are also important factors in mathematical 

thinking. For example, mathematically gifted students experience feelings of reward 

when solving mathematical problems, causing continuous training in these 

mathematical tasks. However, other people perceive mathematical tasks as 
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threatening and an anxiogenic condition. Anxiety reactions to this type of problem 

can be so high that they might represent a major threat to mathematical 

performance, probably because of the fact that anxiety consumes working memory 

resources. The negative impact of anxiety on mathematical achievement may arise 

even before the subject begins to solve the mathematical problem. Therefore, 

controlling the negative feelings that precede mathematical performance might be the 

best way to deal with this type of mathematical performance failure. Accordingly, 

appropriate mathematical thinking certainly involves the good management of one’s 

working memory resources and adequately dealing with anxiety reactions that might 

occur before solving the mathematical task. 
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